您的位置:黄埔信息网 >生活常识 > 什么是素数(有哪些和素数有关的数学猜想)

什么是素数(有哪些和素数有关的数学猜想)

时间:2021-04-21 01:40:46来源:黄埔信息网

什么是素数(有哪些和素数有关的数学猜想)

素数是所有数字的基础,就如元素周期表中的化学元素一样,化学元素是组成所有化学物质的基础,素数包含了数的所有奥秘,所以数学研究者对素数有着特殊的喜爱。


素数

素数也叫质数,指大于1的自然数中,除了1和它本身外不再有其他因数的自然数,比如2、3、5、7、11、13……。

素数是什么,有哪些和素数有关的数学猜想还未得到解决?

最初研究素数的是古希腊数学家欧几里得(约公元前330年—前275年),他在《几何原本》中用反证法,对“素数有无穷多个”给出了一个经典的证明方法。

证明思路:

假设存在最大的素数P,那么将已知所有的素数相乘再加1,得到M:

M=2×3×5×7×11×……×P+1,

显然M不可能被已知的任何一个素数整除,所以M有可能是素数,或者存在比P更大但是比M小的素数因子;无论哪种情况,都说明存在比P更大的素数,与假设矛盾,所以素数是无限的。

素数是构成整数的基础,所有整数都可以用素数来表示,如下:

素数是什么,有哪些和素数有关的数学猜想还未得到解决?

所以素数包含了所有整数的奥秘,整数分解就是破解整数奥秘的途径之一,因为整数分解后只剩下素数因子。


素数的应用

在现实生活中,数的分解是许多网络加密的基础,我们要把两个已知数相乘很容易,但是要把一个大数分解却很难,利用整数的这一非对称特性,密码学家巧妙地设计了加密和解密的数学原理,比如RSA非对称加密算法,就是基于大数分解。

素数是什么,有哪些和素数有关的数学猜想还未得到解决?

换句话说,一旦出现一种算法能很快地分解一个大数,那么RSA加密方法将失效,但是目前为止还没有出现这样的高效算法。


素数的未解之谜

数学家围绕素数发现了许多规律,其中很多还是猜想,有些历经几百年也没有人能够证明,这些猜想都是数学上的圣杯,谁要是能证明其一,必定名留青史。

(1)哥德巴赫猜想

猜想内容:任何一个大于2的偶数,都可以写成两个素数之和,简称“1+1=2”。

素数是什么,有哪些和素数有关的数学猜想还未得到解决?

哥德巴赫于1742年提出,如今已经270多年,最好的成果是我国数学家陈景润证明的“1+2”,也就是:任一充分大的偶数,都可以写成一个素数与一个不超过两个素数的乘积之和。

(2)孪生素数猜想

相差2的素数对叫做孪生素数,比如5和7,11和13,该猜想说的是孪生素数有无穷多对。

素数是什么,有哪些和素数有关的数学猜想还未得到解决?

目前最好的成果,是美籍华人数学家张益唐,在2013年提出一种方法,证明存在无穷多个差小于某个数M的素数对,当时张益唐证明了M=7000万的情况,一旦完成M=2就解决了孪生素数猜想,目前M已经被缩小到了200多。

(3)ABC猜想

该猜想描述了三个互素整数a、b、c(满足a+b=c)的素因子之间的关系,是数论中一个非常美妙的猜想,也是一个非常强的数学猜想,一旦ABC猜想被证明,那么证明费马大定理只需要短短五句话。

关于我们| 广告服务| 诚聘英才| 联系我们| 友情链接| 免责申明| 网站地图
Powered by www.huangpujs.cn 版权所有